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Abstract 

Medical diagnosis can be challenging because of a number of factors. Uncertainty in the 

diagnosis process arises from inaccuracy in the measurement of patient attributes, missing 

attribute data and limitation in the medical expert’s ability to define cause and effect 

relationships when there are multiple interrelated variables. Given this situation, a decision 

support system, which can help doctors come up with a more reliable diagnosis, can have a lot of 

potential. 

Decision trees are used in data mining for classification and regression. They are simple to 

understand and interpret as they can be visualized. But, one of the disadvantages of decision tree 

algorithms is that they deal with only crisp or exact values for data. Fuzzy logic is described as 

logic that is used to describe and formalize fuzzy or inexact information and perform reasoning 

using such information. Although both decision trees and fuzzy rule-based systems have been 

used for medical diagnosis, there have been few attempts to use fuzzy decision trees in 

combination with fuzzy rules. This study explored the application of fuzzy logic to help diagnose 

liver diseases based on blood test results. In this project, inference systems aimed at classifying 

patient data using a fuzzy decision tree and a fuzzy rule-based system were designed and 

implemented. Fuzzy decision tree was used to generate rules that formed the rule-base for the 

diagnostic inference system. 

Results from this study indicate that for the specific patient data set used in this experiment, the 

fuzzy decision tree-based inferencing out performed both the crisp decision tree and the fuzzy 

rule-based inferencing in classification accuracy. 
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Chapter 1. Introduction 

Data mining is the analysis of large amounts of data to discover relationships and patterns that 

have not been previously discovered by using tasks such as anomaly detection, association rule 

learning, clustering, classification, regression and summarization. Classification is one of the 

main tasks of data mining, which helps classify data into different meaningful categories based 

on a training set [6],Data mining techniques are widely used even in the medical field[12]. 

Death from cancer is increasing across the world [30], and one of the most common causes of 

cancer-related deaths is liver cancer [13]. Every year in America, almost 15,000 people die from 

liver disease [1]. In underdeveloped countries, resources to detect liver cancer are limited [31], 

misdiagnosis and lack of availability of health professionals are some other factors which 

contributes to the delay of early diagnosis of cancer. Late diagnosis can be one of the primary 

reasons for this increase in the death rate due to cancer[33].An early diagnosis of the cancer may 

increase patient’s survival rate [32],Given this situation, an automatic tool to diagnose any liver 

disease based on blood test results could be helpful. 

Data mining techniques are one of the broadly used techniques in building decision support 

systems, especially clinical decision support systems [11].A decision based system to diagnose 

liver diseases could help doctors with early and more accurate diagnosis, thus decreasing the 

chances of misdiagnosis. It should be simple such that even general practitioners are able to use 

it to give advice to patients about the urgency of consulting a specialist if needed. 

1 
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1.1 Fuzzy Logic 

The idea of fuzzy logic was brought to light by Dr. Lotfi Zadeh of the University of California in 

the 1960s, while he was working on the problem of computer understanding of natural language 

[14]. Fuzzy logic is described as logic that is used to describe and formalize fuzzy or inexact 

information. It is an approach to computing based on degrees of truth rather than the true or false 

values expected in classical Boolean logic. Instead of interpreting facts as absolutely true or 

absolutely false, fuzzy logic accepts that they can be partly true and partly false at the same time. 

Application of fuzzy logic has proved itself to be a powerful technique for decision making in 

many areas [15]. One such area where fuzzy logic has been found useful is medical diagnosis 

[16]. 

In general, variations in diagnostic decisions made by medical practitioners arise because of 

uncertainties or vagueness in patient information used in the diagnostic process. In general, 

practitioners consider cause and effect relations that tend to give poor results because of its 

inability to deal with uncertainty in data. In such cases, a fuzzy expert system can be useful. 

Using techniques such as fuzzy logic can be used in medical diagnosis as more reliable 

conclusions can be made relating to individual patient’s data. Fuzzy logic can be a powerful 

technique especially in liver, heart, and diabetes disease diagnosis [8] [16] [17] [18]. A medical 

diagnosis in such diseases can be a complicated task and needs to be performed more reliably. 

Fuzzy logic in liver disease diagnosis can help capture the required medical information of 

patient and come up with diagnosis decisions that are more accurate than traditional approaches 

in the medical world [18]. Practically in today’s medical world, an expert physician’s experience 

is specified in fuzzy terms, which helps them to portray the accurate knowledge rather than 

knowledge with uncertainties [10]. Generally, experts tend to use fuzzy terms while interacting 

2 
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with the patient. For example, if a patient visits the doctor’s office. The doctor may use fuzzy 

terms like “your fever is very high” instead of saying “your fever is 103 Celsius”. 

1.2 Decision Trees 

Decision trees (DTs) are tree-like structures; they are used in data mining for classification and 

regression [6]. The goal of DTs is to create a model, which can help predict a target variable 

based on several input variables. After developing the model, rules can be derived following the 

path from the root node to the corresponding leaf node; conjunction or disjunction can be used to 

connect the internal nodes. DTs are simple to understand and interpret as they can be visualized. 

But, one of the disadvantages of this algorithm is it considers only crisp values for both input and 

target class. 

Figure 1 is a sample decision tree, which was generated using a hepatitis liver dataset by Shankar 

Sowmien [5].The attributes such as age, sex, liver big, liver firm, albumin, SGOT, spiders are 

used to build the decision tree where each attribute has its own range. For example, age attribute 

has a range from 10 to 90. The classification of this tree is based on the all patient attributes and 

the class, which helps in classifying whether the patient lives or dies after the diagnosis: One 

such rule generated by the decision tree is 

If Ascites <=1 and Albumin >2.8 and liver firm <=1 then patient lives. 

3 
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Figure 1.Example of a crisp decision tree 

In order to build any decision tree using ID3 algorithm, Decision tree is usually built from the 

root node by dividing into the subsets with homogeneous instances and to calculate this 

homogeneousity of a sample, entropy used. Entropy of each branch is calculated and the branch 

which has entropy value as zero is considered as root node. After the entropy is calculated, 

information gain is calculated which is decrease in entropy. The attribute with largest 

information gain is considered as next decision node and this selection of next attribute continues 

until all the data is classified. 

1.3 Fuzzy Decision Trees 

Fuzzy decision trees combine the crisp decision tree with fuzzy set theory, i.e. the crisp values 

used to split the decision criteria are replaced with fuzzy values. To make rules from the decision 

trees, the path from the root node to the corresponding leaf node is considered. Conjunction or 

disjunction is normally used to connect the internal nodes. The same methodology is applied to 

decision trees using fuzzy logic concepts. The decision on splitting a branch in fuzzy decision 

4 
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trees can be based on either numerical or linguistic values. This is one of the main advantages of 

fuzzy decision trees [3]. 

Rules derived from fuzzy decision trees are easy to read and understand. Each node in a fuzzy 

decision tree is associated with a variable; each branch is associated with a fuzzy subset of that 

variable. Hence, rules derived from fuzzy decision trees are fuzzy rules. Let’s consider an 

example rule from the crisp decision tree shown in Figure 1 above. 

If Ascites <=1 and Albumin <=2.8 Then Patient Dies 

The above rule requires specific threshold values that can be difficult to derive or agree on. 

Fuzzy rules accept inexact linguistic values in rules. Using fuzzy rules instead of rules from crisp 

decision tree can make it a lot easier to understand the rules as they are expressed in linguistic 

terms such as high, low, medium etc., instead of crisp numerical values. Given below is an 

example of a fuzzy rule derived from fuzzy decision trees [8]: 

IfAge= ” Young” ANDVR_HG= ” High ” Then Class = ” High ” 

The goal of this thesis is to develop an inference system to aid the diagnosis of liver diseases 

using fuzzy logic where rules are derived from fuzzy decision trees. Unlike traditional 

approaches, which give uncertain outputs, we propose to use fuzzy logic to come up with a more 

accurate diagnosis of the patient’s disease. Here fuzzy logic will be used to generate a fuzzy 

inference system (FIS), which uses fuzzy set theory to map inputs to outputs. The output of the 

system will be the probability of a patient having liver disease and inputs will be various test 

results related to liver diagnosis such as Total Bilirubin, SGOT aspartate aminotransferase, 

SGPT alamine amino transferase, Albumin, and andalkphos alkaline phosphatase. 

5 
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1.4 Fuzzy Inference Systems 

Fuzzy logic can be used to generate a fuzzy inference system (FIS), which uses fuzzy set theory 

to map inputs to outputs. In case of medical diagnoses, inputs can be patients’ test results, and 

the output is the diagnostic result. In order to compute the output of the FIS, given the inputs, 

one must go through the following steps: 

1. Inputs are fuzzified using the input membership functions. Membership function is used to 

graphically represent the input points, and it helps to describe how each input point is mapped to 

a membership value. Fuzzification is the first and foremost step to build an inference system It is 

concerned with transforming the input to fuzzy sets with the help of membership functions is 

called fuzzification. 

2. A rule base must be built. A rule base is composed of if - then rules. These rules help in 

transforming inputs to output, i.e. based on a rule and inputs, the diagnosis of the patient is 

determined. 

3. If a crisp output is needed, then the output should be defuzzified. Defuzzification is process of 

transforming fuzzy sets into crisp values. Centroid, bisector, middle, and smallest and largest of 

maximum are examples of defuzzification methods. 

1.5 Thesis Goals 

These days, it is a real challenge for a physician to go through patient reports and diagnose the 

disease due to time constraints. The expert needs to take into account numerous symptoms and 

diagnostic measurements.They also have to deal with complex relationships between multiple 

interacting factors; uncertainty introduced by errors in measurement, and missing data. In this 

situation, a decision support system which can help in assisting an expert to diagnose the disease 

can come in handy. For instance, this system can help the expert in recommending a preliminary 

6 
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diagnosis which can be used like a second opinion. It can even be of help to the certified general 

physician in advising the patient if he/she should consult the specialist or not. 

This study aims to validate the following hypotheses: 

1. Fuzzy decision trees can outperform crisp decision tree-based systems in the accuracy of 

classification applied to liver disease diagnosis. 

2. Fuzzy decision trees can provide the necessary rules to build a fuzzy rule-based decision 

support system to diagnose liver disease. 

3. Fuzzy rule-based inference systems can outperform fuzzy decision trees in accuracy of 

classification applied to liver disease diagnosis. 

1.6 Thesis Organization 

This thesis focuses on liver diagnosis so a literature review on the use of decision trees and fuzzy 

inference systems will be covered in chapter 2. Chapter 3 discusses the methodology used and 

how the proposed system is implemented. Chapter 4 covers the experimental results. Finally, 

conclusion and future work are presented in chapter 5. 

7 
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Chapter 2.Related Work 

Different researchers used different methodologies in the field of medical diagnosis. Some of the 

applications which are developed so far using decision trees and fuzzy inference systems are 

discussed below: 

Liver disease can be assessed by using various algorithms like the linear discriminant analysis 

(LDA), diagonal linear discriminant analysis (DLDA), quadratic discriminant analysis (QDA), 

diagonal quadratic discriminant analysis (DQDA), naive Bayes (NB), feed-forward neural 

network (FFNN), and classification and regression tree (CART). These Algorithms help to 

identify the exact problem associated with the liver and guides the doctors for better treatment 

based on the results generated from the assessment algorithms. Of all the above algorithms, 

results obtained by CART are proven to be much more accurate, reducing the inefficiency in the 

results. The accuracy of the results mostly depends on the type of datasets used as input for the 

algorithms [35]. 

Different techniques were used for different purposes as explained below. 

Artificial Neural Networks is used in the field of medical diagnosis as follows: 

• For the early identification of hepatectomised patient [36]. 

• To cure the hepatobiliary disorders [37], 

• For the hepatitis disease diagnosis [38], 

• For the classification of liver cyst, hepatoma and cavernous haemangioma [39], 

• To diagnose types of cirrhosis [40]. 

• For the classification of fatty liver, liver cirrhosis and liver cancer [41 ]. 

8 
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Artificial Immune System is used for the diagnosis of Hepatitis disease. ANN-CBR together is 

used for knowing the types of liver disorder and their treatment [40], 

Fuzzy logic was used to classify liver disorders under Alcoholic liver damage, primary 

hepatoma, liver cirrhosis and cholelithiasis, to differentiate between healthy and unhealthy liver 

patients, to diagnose hepatitis, and to perform semi-automatic liver tumor segmentation 

[47] .After careful examination of all the techniques, It was observed that novice researchers use 

•methodologies such as ANN and Artificial Neural Network combined with fuzzy logic for liver 

disorder datasets as it has wide acceptance with higher accuracy results [47]. 

Sow mien et al. proposed a diagnosis system for a type of liver disease called hepatitis using 

machine learning. They used the C4.5 algorithm to generate a decision tree to find the 

abnormalities of patient with 19 attributes and obtained an accuracy of 85.81 with their overall 

study [5], 

Kumar and Sahoo wrote a paper in which they used Support Vector Machines (SVM), rule 

induction, decision trees, Naive Bayes classification, Artificial Neural Networks (ANN), and 

data mining with K-cross fold techniques for the prediction of liver diseases. The results from 

their experiments showed that a rule-based classification model with decision tree techniques 

gave most precise results [9], 

In the paper, “Improving the Prediction Accuracy of Liver Disorder Disease with 

Oversampling,” Hyontai experimented on ‘BUPA liver disorder’ dataset with C4.5 and CART 

decision trees algorithm. They validated the over-sampling method in minor classes to 

effectively deal with the data insufficiency problem. The results proved that the oversampling 

method is effective, and it is more effective when used in the CART decision tree algorithm [4], 

9 
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Parminder and Aditya used random tree algorithm to generate rules and decision trees for the 

classification of liver based diseases. Based on the attributes like Neurological, Psychiatric, 

Pathological, Physical and cognitive and symptoms, the authors generated decision tree using 

Weka to diagnosis the liver based diseases, such as Wilson, fatty liver, Cholesteric, inherited, 

and autoimmune. The results show that decision trees can be used to model actual diagnosis of 

liver cancer for surgical and non-surgical treatment [49]. 

Eyke Hullermeier performed a survey on why Fuzzy Decision Trees are Good Rankers. The 

author discovered that Laplace correction significantly increases performance in terms of AUC 

and un-pruned trees almost always have higher AUC values than standard pruned trees (Laplace 

correction). In other words, according to the author a single decision tree cannot be both a good 

classifier and a good ranker at the same time. Whereas, author thinks that Fuzzy decision trees 

may overcome this problem [50]. 

Some studies were carried out on medical diagnosis using decision trees and fuzzy logic. 

Decisions trees were used for cardiovascular dysautonomias diagnosis [8], The researchers 

developed a fuzzy decision tree based on patient dataset and compared error rates between crisp 

and fuzzy decision trees. Their results showed that fuzzy decision trees were better in accuracy 

than crisp decision trees. Fuzzy decision trees were also used for prediction of the death of a 

patient with heart failures and the experimental results of this research were shown to be accurate 

with a sensitivity of 67.3% and a specificity of 62.6% [3], 

Among the different techniques used to diagnose the liver disorders, using fuzzy decision trees is 

preferred for the following reasons [48]: 

10 
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1. Like the other techniques fuzzy decision trees not only work on true/false values they 

also work on uncertainty values. For example, if the data values are in between these 

ranges consider the disease to be like hepatitis or an infection. 

2. FL systems are reliable, easy to understand, analyze and train. 

3. They can work even with the imprecise and ambiguous data. 

4. They work with global-K and fast global-K that gives them the feature of even working 

with the datasets that high noise and inaccuracy in them. 

From the Literature review, it was shown that fuzzy decision trees has many advantages such as 

it can perform better in accuracy and a good classifier compared to crisp decision tree. Moreover, 

it was found that artificial neural networks combined with fuzzy logic can be more appropriate to 

diagnose liver disorders [47]. 

11 
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Chapter 3. Methodology and implementation 

3.1 Methodology 

In order to develop a system designed to perform preliminary diagnosis of the liver disease, three 

separate inference systems for classification were built: a crisp decision tree, a fuzzy decision 

tree, and a hybrid system that uses a fuzzy decision tree to derive a set of rules that will 

subsequently be used in a fuzzy rule-based inference system. All three systems were then 

evaluated and compared in terms of their accuracy and ease of understanding. The steps given 

below were followed to build the three inference systems: 

i. Data Acquisition and pre-processing. 

ii. Construction and evaluation a crisp decision tree-based inference system. 

iii. Construction and evaluation of a fuzzy decision tree-based inference system. 

iv. Construction and evaluation of the hybrid fuzzy rule-based inference system. 

3.2 Implementation 

Step 1: Data Acquisition and Pre- processing 

A public dataset, ILPD (Indian Liver Patient Dataset), consisting of 583 patient records, was 

downloaded from the UCI Machine Learning Repository [19]. The dataset was collected from 

the Northeast of Andhra Pradesh, India, and contains 416 records of patients diagnosed with liver 

disease and 167 records of patients diagnosed to be free from liver disease. 

12 
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A B C D E F G H i j j K L 
1 AGE GENDER TB DB AAP SGPT SGOT TP ALB A/G CLASS 
2 66 Male 0.6 0.2 100 17 148 5 3.3 1.9 1 
3 27 Male 1 0.3 180 56 111 6.8 3.9 1.85 1 
4 63 Male 0.9 0.2 194 52 45 6 3.9 1.85 1 
5 28 Female 0.9 0.2 316 25 23 8.5 5.5 1.8 0 
6 35 Female 0.9 0.2 190 40 35 7.3 4.7 1.8 1 
7 43 Female 0.9 0.3 140 12 29 7.4 3.5 1.8 0 
8 62 Male 5 2.1 103 18 40 5 2.1 1.72 0 
9 48 Male 0.7 0.2 326 29 17 8.7 5.5 1.7 0 
10 17 Female 0.5 0.1 206 28 21 7.1 4.5 1.7 1 
11 50 Male 1.1 0.3 175 20 19 7.1 4.5 1.7 1 
12 25 Female 0.9 0.3 159 24 25 6.9 4.4 1.7 1 
13 50 Male 0.9 0.2 202 20 26 7.2 4.5 1.66 0 
14 40 Female 2.1 1 768 74 141 7.8 4.9 1.6 0 
15 68 Male 1.8 0.5 151 18 22 6.5 4 1.6 0 
16 54 Male 2.2 1.2 195 55 95 6 3.7 1.6 0 
17 31 Male 0.6 0.1 175 48 34 6 3.7 1.6 0 
18 31 Male 0.6 0.1 175 48 34 6 3.7 1.6 0 
19 29 Male 0.7 0.2 165 55 87 7.5 4.6 1.58 0 
20 70 Male 1.4 0.6 146 12 24 6.2 3.8 1.58 1 
21 17 Male 0.9 0.2 224 36 45 6.9 4.2 1.55 0 
22 28 Female 0.8 0.2 309 55 23 6.8 4.1 1.51 0 
23 37 Male 0.8 0.2 195 60 40 8.2 5 1.5 1 
24 24 Male 1 0.2 189 52 31 8 4.8 1.5 0 

Figure 2. A snapshot of Dataset 

The dataset contains 10 attributes: age of the patient, gender, total bilirubin, direct bilirubin 

alkaline phosphotase, alamine aminotransferase, aspartate aminotransferase, total proteins, 

albumin, and albumin and globulin ratio. Each record in this data was already classified by 

experts and the diagnosis is stored in a variable called class label. The value for each attribute is 

a binary number; Oorl, where 0 indicates that the patient is a liver patient and 1 indicates that the 

patient is not a liver patient. Each attribute in the dataset has its own significance in diagnosing 

the liver disease as described in the table 1 below: 

13 
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Table 1. Attributes and their significance in diagnosing liver disease 

Attribute Significance 

Total Bilirubin Total Bilirubin test is used to detect the levels of bilirubin in the blood 

i.e. either increased or decreased in the blood. This test helps to identify 

the presence of jaundice in the blood i.e., too much Bilirubin in the blood 

can cause jaundice or icterus and this test also helps in identifying the 

various liver syndromes [20], 

Generally, bilirubin is a precipitate produced by heme, which in turn is 

produced by hemoglobin of Red Blood Cells (RBC). This Bilirubin is 

filtered by liver and in the cases where liver cannot filter this wastage or 

when excess amounts of it is produced then it leads to the malfunction of 

the liver causing liver related diseases[20]. Bilirubin is classified into 

two types. 1. Unconjugated Bilirubin (it is produced by hemoglobin and 

carried to the liver through proteins) and 2. Conjugated Bilirubin 

(usually not present in the blood, these are produced in the liver when 

sugars are attached to Bilirubin) [20]. 

Serum glutamic 

oxaloacetic 

transaminase 

(SGOT) Aspartate 

Aminotransferase: 

SGOT test plays an important role in knowing enzyme levels in the 

blood. SGOT enzyme is present in RBC, liver, heart, pancreas and 

various other major organs. Levels of Aspartate Aminotransferase (AST) 

increases in the blood when an organ gets damaged. The more the extent 

of damage of organ, the more AST that is released into the blood. This 

test is usually done to monitor the patient with liver disease [21]. 

SGPT (Serum 

glutamic pyruvic 

SGPT test is one of the most important test and more specific to liver 

than any other tests. This enzyme is mostly present in liver with minor 

14 
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transaminase) 

Alamine 

Aminotransferase 

amounts in kidneys, pancreas etc. 

Usually low levels of alamine aminotransferase are observed in blood. 

But when liver or other parts containing alanine aminotransferase are 

damaged, then more alanine amino transferase are released into the 

blood. 

Both the tests of SGPT and SGOT can be done at same time and the 

ratio of SGOT and SGPT helps to find out whether the liver is damaged 

or not [22], 

Albumin Albumin test is used to evaluate the function of liver and kidneys i.e., 

albumin test can help in knowing if the body is absorbing sufficient 

proteins or not. It plays an important role in preventing fluid in the blood 

leaking into the tissues. Lower levels of Albumin are a warning that 

further analysis might be required. Dehydration and high protein diet 

increase the albumin levels in the blood [23], 

Alkphos Alkaline 

Phosphatase (AAP)\ 

AAP test is used to measure the amount of alkphos enzyme in the blood 

and helps to determine how well the liver is functioning and also for the 

bone disorders. Usually the blood has low levels of ALP, but when the 

person has liver or bone disorders then more ALP is observed in that 

person's blood. Checking the alkphos levels is necessary for a liver 

function test and helps to determine if liver is damaged or diseased [24], 

Total Proteins Total Proteins test is used for the calculation of total proteins and 

globulins present in the body. Generally, this test is performed on the 

patients who have weight loss, kidney and liver diseases. Less number of 

proteins in the body leads to fatigue, kidney disorders and liver 

malfunctions [25]. 

15 
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Direct Bilirubin 

Alkaline 

Phosphotase: 

Direct bilirubin test is used to check malfunction of the liver. Usually the 

blood has lower levels of alkaline phosphatase. Increased levels of 

malfunctioning of the liver leads to increased levels of alkaline 

phosphatase in the blood. This test is always performed in conjunction 

with Aspartate Aminotransferase and Alanine Aminotransferase. 

Albumin and 

Globulin Ratio (A/G 

ratio): 

A/G ratio test is most of the times performed in conjunction with the 

total proteins test. This test is used to analyze the albumin and globulin 

ratio If A/G ratio is not in the normal range then there are the chances of 

patient going through fatigue and bone disorders [26]. 

Data pre-processing helps convert the raw data into system acceptable format. Input data needs 

to be processed before feeding it into the system; this pre-processing includes data cleaning, 

normalization, transformation, feature extraction ...etc. To help with this research, data cleaning 

was performed. Records which had missing and abnormal values were removed. The general 

process involved two phases as described below: 

a. Dealing with missing data: 

Not all the times the missing data has to be considered for the experimental process. It all 

depends on the impact of missing data on the final response. If the missing data has nothing to do 

with the final output then it can be neglected and if the same missing data plays a crucial role in 

the final output then it has to be given utmost importance. 

This problem can be overcome by two methods [27], 

1. Deleting the missing data: If the missing data doesn't have any impact on final output or 

if the data is missing at random intervals then such data can be removed. 

16 
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2. Filling the missing data based on the rest of the datasets: In this case the average of the 

available data sets is taken and replace those with the missing values. 

It was found that there were only four data records with missing values out of 583 data records in 

total. As this is a low number compared with the total number of records, those four data records 

were just deleted, 

b. Dealing with outliers: 

An outlier can be considered as an odd value or a distracting value in the dataset that reduces the 

analytical capability of a dataset. One of the ways to deal with the outliers is to delete them. 

SGOT Dataset versus Frequencies 
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Figure 3. SGOT dataset versus frequencies 

Figure 3 shows a visualization of one of the attributes called SGOT in the dataset that is used in 

this research. The outliers are observed at two points after the data visualization. One at 4929 and 

the other at 2946 and the rest of the values are under the value of 2000. Hence, these two outliers 

were deleted from the data. 
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Step 2: Construction and evaluation of Crisp Decision Tree 

As shown earlier in Figure 2, there are 10 input attributes and one selector field labeled by 

experts. Each record in the patient dataset is already classified based on the corresponding 

patient’s diagnosis by medical experts. This classification is represented by the column headed 

“Class”, with a 0 label indicating that the patient is a liver patient and 1 indicating that the patient 

is not a liver patient. The decision tree helped in deriving the combinations of input attributes by 

which the class was labeled. 

By trial and error method, crisp decision trees were developed using Weka 3 which is free-ware 

software available online used to build the crisp decision tree using the Indian Liver Patient 

dataset [29]. Two crisp decision trees were developed one tree with fewer rules and lower 

accuracy and other tree had more rules and higher accuracy. Both the decision trees were built 

using C 4.5 algorithm. At each and every node of the tree, C4.5 chooses the attribute which has 

the highest normalized information gain to make the decision. A visualization of the crisp trees is 

shown in Figure 4 and Figure 5. The decision tree shown in Figure 4, has 19 rules with 69% 

accuracy, while the decision tree shown in Figure 5 has 1547 rules with accuracy equals 86.44%. 
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Figure 5. Crisp decision tree with 1547 rules 

To derive the rules from a crisp decision tree, each path from root node to leaf node is 

considered. An example rule can be attained by following a path from the root node to a leaf 

node, which represents a classification as can be seen in Figure 6 
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Figure 6. A sample branch of a crisp decision tree 

Sample rule for the branch shown in Figure 6: 

IfSGPT is not equal to 10 and if AAP = 146 then the patient has liver disease. 

Step 3: Construction and evaluation of the fuzzy decision tree 

To build a fuzzy decision tree, the membership values of each input variable in the associated 

fuzzy sets are computed. Examples of membership functions for Total Bilirubin and Direct 

Bilirubin attributes are shown in Figure 7. Different attributes with corresponding fuzzy sets and 

their ranges are shown in Table 2. 

(a) Membership for the attribute Total Bilirubin (b) membership for the attribute Direct Bilirubin 

Figure 7. Membership functions for Total and Direct Bilirubin 
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Table 2. Different attributes with corresponding fuzzy sets and their ranges 

Input Attribute Range Fuzzy Set 

AGE 

0-25 Young 

20-60 Adult 

45-90 Old 

Total Bilirubin 

0-0.3 Low 

0.1-1.3 Normal 

1.0-32.6 High 

Direct Bilirubin 

0-0.3 Normal 

0.2-1.3 High 

30-875 High 

SGOT Aspartate 
Aminotransferase 

0-40 Normal 

30-950 High 

Total Proteinf TP) 

0-7 Low 

5-8.35 Normal 

1.9-92 High 

Albumin(ALB) 

0-3.2 Low 

2.8-5 Normal 

4.3-5.5 High 

Albumin and 
Globulin Ratio(A/G) 

0-0.8 Low 

0.6-1.9 High 

The fuzzy decision tree is built using the FID 3.5software developed by Professor Cezary Z. 

Janikow [33], This software requires three files to build the fuzzy decision tree: 

1) Attributes file, 2) Events file, and 3) Templates file. 
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The first file contains all the attributes along with their fuzzy sets were converted into a specific 

format. Snapshot of the file format is shown in Figure 8 below; 

NumberOfAttributes 

AttrName attrType numLingVals [lowerBd upperBd [minNumVals maxNumVals]] 

LingValName [pointl point2 point3 point4] 

Figure 8. A snapshot of the attributes file format 

File Edit Format View Help 

10 

AGE 1 3 0 90 

Young 0 0 0.1 0.3 

Adult 0.2 0.3 0.4 0.6 

Old 0.5 0.9 1 1 

GENDER 0 2 

Male 

Female 

TB 1 3 0 32.6 

Low 0 0 0.01 0.012 

Normal 0.01 0.02 0.03 0.043 

High 0.03 0.5 1 1 

Figure 9. A snapshot of the Attributes file 

The first line in the file is the number 10 which denotes the number of attributes. The file 

contains all attributes names as AGE, GENDER ...etc. The digit 1 next to the AGE attribute 

represents that the type of Age attribute is Linear (0 is used if the type of attribute is nominal). 

The digit 3denotes that there are three linguistic values (represented by three fuzzy sets) 

associated with the AGE attribute. The range 0-90 represents range of values the Age attribute 

can take. Young, Adult and Old are the names of fuzzy sets associated with the attribute Age. 
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In the second file, the entire data set is described. 450 records (referred to events in FID 

terminology) were used to train the tree and 105 events to test the tree. 

Snapshot of the event file is shown below: 

NumEvents numOf.Attributes 

AttrlValue Attr2Value_decisionValue MsightValue 

Figure 10. A snapshot of the Events file 

Variable Decision-Value represents the classification of each patient data record into either one 

of two categories - diagnosed as a liver disease patient and not a liver disease patient. 

A sample extract from the event file that was used in building the tree is shown below: 

|4-50 10 

66 Male 0.6 
27 Male 1 
63 Male 0.9 

28 Female 0.9 

35 Female 0.9 
43 Female 0.9 

62 Male 5 

48 Male 0.7 
17 Female 0.5 

50 Male 1.1 
25 Female 0.9 
50 Male 0.9 

40 Female 2.1 
68 Male 1.8 
54 Male 2.2 
31 Male 0.6 

31 Male 0.6 
29 Male 0*7 

0.2 100 17 

0.3 180 56 
0.2 194 52 
0.2 316 25 
0.2 190 40 
0.3 140 12 

2.1 103 18 
0.2 326 29 
0.1 206 28 
0.3 175 20 
0.3 159 24 

0.2 202 20 

1 768 74 
0.5 151 18 
1.2 195 55 

0.1 175 48 
0.1 175 48 
0.2 165 55 

148 5 3.3 
111 6.8 3.9 
45 6 3.9 
23 8.5 5.5 
35 7.3 4.7 

29 7.4 3.5 
40 5 2.1 
17 8.7 5.5 
21 7.1 4.5 
19 7.1 4.5 

25 6.9 4.4 
26 7.2 4.5 
141 7.8 4.9 

22 6.5 4 
95 6 3.7 
34 6 3.7 
34 6 3.7 

87 7.5 4.6 

1.9 1 1 

1.85 1 1 
1.85 1 1 
1.8 0 1 

1.8 1 1 
1.8 0 1 
1.72 0 1 
1.7 0 1 
1.7 1 1 

1.7 1 1 
1.7 1 1 
1.66 0 1 
1.6 0 1 

1.6 0 1 
1.6 0 1 
1.6 0 1 
1.6 0 1 

1.58 0 1 

Figure 11.A sample output from the Events file 

It is worth noting that as it was not known which event is more important; all the events were 

given equal weights. 

The third file consists of the default of the template that can be used, all the parameters which 

help in building the tree like Chi-squared test, fuzzy stop level, type of discretization, etc., are 

defined here. 
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FID35 software allows both top down and bottom up discretization, top down approach was used 

in this research. Top-down discretization performs data-driven discretization by splitting sets 

spanned over linear non pre-partitioned attributes. Splitting is data-driven, i.e. it performs 

splitting only on relevant attributes. Set-based inferences were used in building the tree as the set 

based inferences treat leaves as fuzzy sets. Chi-squared test was performed. 

Step 4: Construction and evaluation of the hybrid fuzzy inference system 

To build the fuzzy inference system we need input data and rules. Input data was available from 

the Step 1. Rules play a very important role in building the FIS. Fuzzy rules extracted from Step 

3 were used in building the fuzzy inference system. An example of how the following fuzzy rule 

was extracted is discussed below. 

[DB-Normal] [SGOT-Normal] [TP-Normal] [A GE-Adult] [ALB -Normal] [GENDER=Male][SGPT-No 

rmal][TB-Normal][AAP=Normal]: IN-0.97 PN—1.96: Yes=0.78 No=1.18 RS—0.611 rs=1.000 

bestDec—1 

The set based inference system is an inference which uses the areas and/or centroids of the fuzzy 

sets to compute the decision value for the dataset. Here, in this paper the fuzzy decision tree uses 

the centroids of the fuzzy sets to compute the decision value. There are different stopping 

criteria's used to avoid producing large fuzzy decision trees, one among those is by using "IN" 

and "PN" in Figure 12. 
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Figure 12. A sample screen shot of the Tree file generated by the FID software 

IN helps in providing information content at which expansion should be stopped and PN helps in 

providing the minimal event count at which expansion should be stopped. Yes and No in Figure 

12 above are the names of decision class, each of these decision classis followed by the centroid 

values, e.g., the shaded event in Figure 12has a centroid of 0.78 in the 'Yes' class and 1.18 in the 

'No' decision. Best Dec is the delta best value; this uses centroid from majority class in leaf 

value. In this case it is T (having the highest centroid of 1.18) i.e., it belongs to 'No' decision 

class, as 0 represents decision class 'Yes' and 1 represents the decision class 'No'. From the above 

record of the tree file, we can derive the fuzzy rule as: 

If [DB=Normal] and [SGOT=Normal] and [TP=Normal] and [AGE=Adult]and [ALB=Normal] and 

[GENDER=Male]and [SGPT=Normal]and [TB=Normal] and [AAP=Normal] then the probability of 

patient having liver disease is low 
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The most important thing to build a fuzzy inference system is fuzzy rules. The fuzzy inference 

system was built using the rules that are extracted from fuzzy decision tree. The same fuzzy sets 

that were used to build the fuzzy decision tree were used in building the inference system. 

Steps to build the fuzzy inference system are discussed below: 

Step 1. Variables selection 

Inputs and output variables were selected; all the 10 attributes from the data set used in 2 were 

used as inputs, while the output is the likelihood of person having the liver disease. 

1 1 
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Figure 13. A snapshot of the fuzzy inference system 

Step 2. Fuzzification 

Fuzzifying the inputs is the first step to build any fuzzy inference system, this is done by 

transforming the input to fuzzy sets with the help of membership functions. Membership 

function is calculated for each fuzzy set, i.e. range values are estimated and the shape of the 
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function is chosen. In this FIS, Trapezoidal membership functions were used for the input 

variable Age. Age has three fuzzy set values: Young, Adult, and Old as shown in Figure 14. 

Trapezoidal membership functions were also used for the output fuzzy variable (Probability of 

patient having liver disease) , which have output fuzzy value sets named Low and High as shown 

in Figure 15 
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Step 3. Rule Evaluation 

The rule-base was constructed from the rules extracted from the fuzzy decision tree. 

If-else condition and conclusion were used, based on which of the outputs were calculated and 

controlled. The rule-base derived from the fuzzy decision tree is given below: 

1. If (AGE is Young) and (TB is Normal) and (DB is Normal) and (SGOT is Normal) and (TP is 

Low) then (output 1 is low) 

2. If (AGE is Adult) and (TB is Normal) and (DB is Normal) and (AAP is Normal) and (SGOT is 

Normal) and (TP is Low) and (AG is Low) then (output 1 is low) 

3. If (AGE is Adult) and (TB is Normal) and (DB is Normal) and (AAP is Normal) and (SGOT is 

Normal) and (TP is Low) and (AG is Normal) then (output 1 is High) 

4. If (AGE is Adult) and (TB is Normal) and (DB is Normal) and (AAP is High) and (SGOT is 

Normal) and (TP is Low) then (output 1 is low) 

Step 4: Defuzzification 

In this step the outputs obtained for each rule in step into a single fuzzy set, using a fuzzy 

aggregation operator. Probability of a person having liver disease is calculated by considering the 

maximum as the aggregation for the output result. The decisions (i.e., probability) are made only 

after testing all the rules in the FIS, this process is done by aggregation where fuzzy set 

membership values that represent the outputs of each rule are combined into a single aggregated 

fuzzy region. 
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Figure 16. Output of Fuzzy Inference System 

The patient data described in Table 3 below is the sample records from the patient dataset used in 

this research. 

Table 3. Sample patient record 

AGE GENDER TB DB AAP SGPT SGOT TP ALB A/G 

System 

Output 

16 Male 7.7 4.1 268 213 168 7.1 4 1.2 82.9% 

22 Male 0.8 0.8 198 20 26 6.8 3.9 1.3 27.46% 

48 Female 0.8 0.2 175 48 22 8.1 4.6 1.3 42.18% 
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Chapter ^Experimental Results and Discussion 

The patient dataset was first divided into training data and testing data. The first 75 % of the data 

were used for training and remaining 25% were used for testing. 

Crisp Decision Tree 

The best accuracy obtained for the crisp decision tree built in Step 2 of implementation was 

86.44 %. This tree is too deep with 1560 levels and it is very hard to extract the rules from. By 

numerous trial and error methods, the tree with best accuracy had an accuracy of 86.4 % with 

15471eaves. Each rule is a path from the root node to leaf node, hence there were 1547 rules in 

this tree. 

The system based on a crisp decision tree is quite complex to implement as there are a large 

number of rules. Even medical practitioners might face difficulty in understanding and 

evaluating these rules and the results derived from the tree. 

Fuzzy Decision Tree 

Fuzzy decision tree gave an accuracy of 92.38% with 37fuzzy rules. Fuzzy rules are easy to 

understand and the accuracy was quite high compared to the crisp decision tree. To build a fuzzy 

decision tree we needed fuzzy rules, considering all the factors, the fuzzy decision tree was 

considered over the crisp decision tree to build an inference system. 

Fuzzy Inference system 

Fuzzy Inference system was 88.3% accurate in being able to correctly identify the patients 

suffering from liver disease. 
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The Surface View is used to show the graphical mapping between any two inputs and any one 

output, the colors in the graph change according to the output values. Surface view of the output 

corresponds to the same input as in Table 3.As we can consider only two input values at a time, 

total Bilirubin and Direct Bilirubin are shown in the example surface view given in Figure 17. 

0.845 

0.84 

g. 0.835 
3 
o 

0.83 

0.825 

Figure 17. Surface view of FIS with DB and TB as inputs 

Table 4. Comparison of Crisp D ', FDT and Inference System 

Accuracy 
Number of 

Rules 
Ease of 

Understanding 
Sensitivity Specificity 

Crisp 
Decision 

Tree 

86.67% 1547 

Difficult 
compared to 

fuzzy decision 
tree 

86.55% 86.06% 

Fuzzy 
Decision 

Tree 

92.38% 37 Easy to 
understand 97.7% 89.3% 

Fuzzy 
Inference 

System 

88.3% 37 Easy to 
understand 88.3% 87.6% 

. 

From the above Table 4 it can be observed that the fuzzy decision tree achieved better accuracy 

of 92.8% when compared to crisp decision tree (86.67%) and fuzzy inference system (88.3%). 

Reason behind fuzzy decision tree outperforming crisp decision tree could be because crisp 
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decision trees deal with only crisp boundary values which sometimes can be unreasonable, for 

example, person having body temperature of 101.9 diagnosed as low fever and person with body 

temperature of 102 to be diagnosed as having high fever is unreasonable. Whereas fuzzy 

decision trees make reasonable decisions, i.e. linguistic values are used instead of crisp values. 

Along with high accuracy fuzzy rules are even easy to understand. Although fuzzy inference 

system was built based on rules derived from fuzzy decision trees, it still couldn't outperform the 

fuzzy decision trees reason behind this could be using smaller dataset or the membership 

functions used. 
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Chapter 5. Conclusion and Future work 

The purpose of the research described in this thesis was to build a system which could help 

experts or medical practitioners in preliminary diagnosing of liver disease. To achieve this goal, 

a crisp decision tree, fuzzy decision tree and a hybrid fuzzy rule-based inference system, which 

used a fuzzy decision tree to derive rules were developed. As stated in the hypotheses in Chapter 

1, it is possible to build a rule-based decision support system with the help of a fuzzy decision 

tree that can help in diagnosing liver disease. FID software was used to build a fuzzy decision 

tree and its accuracy outperformed the accuracy of the crisp decision tree. As discussed in 

Chapter 2, fuzzy decision tree was indeed the best choice compared to crisp decision tree in the 

field of medical diagnosis especially for diseases related to liver. It was also observed that the 

artificial neural networks combined with fuzzy logic was the best choice for novice researchers 

who desire good results, whereas this research shows that decision trees when combined with 

fuzzy logic can also result in a good performance. 

The rules extracted from the fuzzy decision tree were used in building the fuzzy rule based 

decision support system. The developed fuzzy inference system provided 87.6% accuracy in 

diagnosing whether the patient has liver disease or not. However, the fuzzy inference system did 

not outperform fuzzy decision tree in accuracy. The reason behind this could be because of 

using a small dataset and another reason could be the membership function that was chosen. 

Using different membership functions might help in obtaining better results. 

Acquiring the data is the biggest challenge to perform this research. In the future, it is desirable 

to obtain a large dataset and apply the same methodology and compare the new results to the 

results obtained in this thesis. The goal is to develop a fuzzy inference system that could be used 

in real world. 

33 



www.manaraa.com

References 

1. "LiverFoundation" Retrieved 11 Nov. 2016 from 

http://www.liverfoundation.org/education/liverlowdown/IH013/bigpicture/ 

2. Esfandiari N, Babavalian MR, Moghadam AE, Tabar V, “Knowledge discovery in medicine: 

Current issue and future trend.” Expert Systems with Applications 41 (2014), 4434-4463. 

3. Bohacik J, Kambhampati C, “Classification in a heart failure dataset with a fuzzy decision 

tree.” Advanced Research in Scientific Areas 1 (2012), 1981-1985. 

4. Elyontai S, “Improving the Prediction Accuracy of Liver Disorder Disease with 

Oversampling” Jan - 2012 

5. Shankar V, Sugumaran V , Karthikeyan C.P , Vijayaram T.R. “Diagnosis of Hepatitis using 

Decision tree algorithm” July 2016 

6. Suthaharan, Shan. "Decision tree learning." Machine Learning Models and Algorithms for 

Big Data Classification. Springer US, 2016. 237-269. 

7. Caponetti, Laura, and Giovanna Castellano. "Basics of Fuzzy Logic." Fuzzy Logic for Image 

Processing. Springer International Publishing, 2017. 39-52. 

8. Kadi I., Idri A. “Cardiovascular Dysautonomias Diagnosis Using Crisp and Fuzzy Decision 

Tree: A Comparative Study.” May 2016 

9. Kumar Y., Sahoo G. “ Prediction of different types of liver diseases using rule based 

classification model” 2013 

10. Lim CK, Yew KM, Ng KH, Abdullah BJ. “A proposed hierarchical fuzzy inference system 

for the diagnosis of arthritic diseases.” 2002 

11. Berner, Eta S. Clinical decision support systems. New York: Springer Science Business 

Media, LLC, 2007. 

34 



www.manaraa.com

12. Mary K. “Application of Data Mining Techniques to Healthcare Data” August 2004 

13. Cancer, “World Health Organization”, Retrieved February 2015 from 

http://www.who.int/mediacentre/factsheets/fs297/en/ 

14. Zadeh L.A “Fuzzy sets. Information and Control” 1965 

15. Nguyen Hoang Phuong, VladikKreinovich “Fuzzy Logic and its Applications in Medicine” 

2000 

16. Awotunde J.B., Matiluko O., Fatai O “Medical Diagnosis System Using Fuzzy Logic” June 

2014 

17. NonsoNnamoko, Farath Arshad, David England, JitenVora “Fuzzy Expert System for Type 2 

Diabetes Mellitus (T2DM) Management Using Dual Inference Mechanism” 2013 

18. Satarkar S., Ali M., “FUZZY EXPERT SYSTEM FOR THE DIAGNOSIS OF COMMON 

LIVER DISEASE” 

19. "UCI machinery" Retrieved September 2016 from<http://archive.ics.uci.edu/ml/> 

20. AACC “Lab Tests Online” Bilirubin Retrieved August 2016 from 

https://labtestsonline.org/understanding/analytes/bilirubin/tab/test/ 

21. WebMD Aspartate Aminotransferase(AGT) Test Overview Retrieved August 2016 from 

http://www. webmd. com/digestive-di sorders/aspartate-aminotransferase-ast# 1 

22. WebMD Alanine Aminotransferase (ALT) Test Overview Retrieved August 2016 from 

http://www.webmd.eom/digestive-disorders/alanine-aminotransferase-alt#l 

23. Us National Laboratory of Medicine, Medline Plus “Albumin-blood (serum) test Retrieved 

August 2016 from https://medlineplus.gov/ency/article/003480.htm. 

24. AACC “Lab Tests Online” AlkphosAlkaline Phosphatase Retrieved August 2016 from 

https://labtestsonline.org/understanding/analytes/alp/tab/glance/ 

35 



www.manaraa.com

25. Healthline “Total Protein test” Retrieved August 2016 from 

http://www.healthline.eom/health/total-protein#Overviewl 

26. AACC "Lab Tests Online" A/G ratio Retrieved August 2016 from 

https://labtestsonline.org/understanding/analytes/tp/tab/test/ 

27. University of Stavanger, Jiaqui Ye “Using Machine Learning for Exploratory Data Analysis 

and Predictive Modeling” Data preprocessing. 

28. Lucas Laursenll Nov 2016 | 17:00 GMT, IEE spectrum “ Doctors Still struggle to Make the 

Most of the Computer-Aided Diagnosis” 

29. "Weka software" Retrieved September 2016 from <http://www.cs.waikato.ac.nz/ml/weka/> 

30. "World Health Organization", Retrieved September 2016 from 

<http://www.who.int/mediacentre/factsheets/fs297/en/> 

31. " The 4th Asia-Pacific Primary Liver Cancer Expert Meeting" Retrieved August 2016 

from<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881321/> 

32. "Liver Cancer: Statistics <"http://www.cancer.net/cancer-types/liver-cancer/statistics> 

33. Shahid, Shaouli, et al. "Factors contributing to delayed diagnosis of cancer among Aboriginal 

people in Australia: a qualitative study." BMJ open 6.6 (2016): e010909. 

34. "FID: Fuzzy Decision Tree" <http://www.cs.umsl.edu/~janikow/fid/> 

35. Aman Singh , Babita Pandey, "Liver disorder diagnosis using linear, nonlinear and decision 

tree classification algorithms",2016 

36. Lin R.H, An intelligent model for liver disease diagnosis, Artif. Intell. Med. 47 (2009) 53- 

62. doi:10.1016/j.artmed.2009.05.005. 

36 



www.manaraa.com

37. Hamamoto I, Okada S, Hashimoto T, Wakabayashi H, Maeba T, Maeta H, "Prediction of the 

early prognosis of the hepatectomizedpatient with hepatocellular carcinoma with a neural 

network.," Comput. Biol. Med. 25 (1995) 49-59. 

38. Hayashi Y, Setiono R, Yoshida K, "A comparison between two neural network rule 

extraction techniques for the diagnosis ofhepatobiliary disorders," 20 (2000) 205-216. 

39. Ozyilmaz L, Yildirim T, "Artificial neural networks for diagnosis of hepatitis disease," Proc. 

Int. Jt. Conf. Neural Networks, 2003. 1(2003). 

40. Lee, C. C., Chung, P. C., & Chen, Y. J. (2005, May). "Classification of liver diseases from ct 

images using bp-cmac neural network. In Cellular Neural Networks and Their Applications," 

2005 9th International Workshop on (pp. 118-121). IEEE. 

41. Yahagi T, "Ultrasonographic classification of Cirrhosis based on pyramid neural network," 

in: Can. Conf. Electr. Comput. Eng. 2005.,IEEE, 2005: pp. 1682-1685. 

42. Azaid S.A., Fakhr M.W., Mohamed F, "Automatic Diagnosis of Liver Diseases from 

Ultrasound Images," 2006 Int. Conf. Comput.Eng. Syst. (2006) 313-319. 

43. Badawi, Ahmed M., Ahmed S. Derbala, and Abou-Bakr M. Youssef. "Fuzzy logic algorithm 

for quantitative tissue characterization of diffuse liver diseases from ultrasound images." 

International Journal of Medical Informatics 55.2 (1999): 135-147. 

44. Gadaras, Ioannis, and Ludmil Mikhailov. "An interpretable fuzzy rule-based classification 

methodology for medical diagnosis." Artificial Intelligence in Medicine 47.1 (2009): 25-41. 

45. Luukka P, "Fuzzy beans in classification." Expert Syst. Appl. 38 (2011) 4798^1801. 

46. Ming Lim Kian, Loo Chu Kiong, and Lim Way Soong. "Autonomous and deterministic 

supervised fuzzy clustering with data imputation capabilities." Applied Soft Computing 11.1 

(2011): 1117-1125. 

37 



www.manaraa.com

47. Neshat, M., et al. "Fuzzy expert system design for diagnosis of liver disorders." Knowledge 

Acquisition and Modeling, 2008. KAM'08. International Symposium on. IEEE, 2008. 

48. Singh, Aman, and Babita Pandey. "Intelligent techniques and applications in liver disorders: 

a survey." International Journal of Biomedical Engineering and Technology 16.1 (2014): 27- 

70. 

49. Kaur, Parminder, and Aditya Khamparia. "CLASSIFICATION OF LIVER BASED 

DISEASES USING RANDOM TREE." International Journal of Advances in Engineering & 

Technology 8.3 (2015): 306. 

50. Hullermeier, Eyke, and Stijn Vanderlooy. "Why fuzzy decision trees are good rankers." IEEE 

Transactions on Fuzzy Systems 17.6 (2009): 1233-1244. 

38 



www.manaraa.com

Appendix: Fuzzy rules extracted from the fuzzy decision tree 

1. If (AGE is Old) and (TB is Normal) and (DB is Normal) and (SGOT is Normal) and 

(TP is Low) and (AG is Low) then (output 1 is High) 

2. If (AGE is Old) and (TB is Normal) and (DB is Normal) and (SGOT is Normal) and 

(TP is Low) and (AG is Normal) then (output 1 is High). 

3. If (AGE is Young) and (TB is Normal) and (DB is Normal) and (SGPT is Normal) 

and (SGOT is Normal) and (TP is Normal) and (ALB is Normal) then (output1 is 

low). 

4. If (AGE is Young) and (TB is Normal) and (DB is Normal) and (SGPT is High) and 

(SGOT is Normal) and (TP is Normal) and (ALB is Normal) then (output 1 is low). 

5. If (AGE is Adult) and (DB is Normal) and (AAP is Normal) and (SGOT is Normal) 

and (TP is Normal) and (ALB is Low) then (output 1 is High) . 

6. If (AGE is Adidt) and (DB is Normal) and (AAP is High) and (SGOT is Normal) and 

(TP is Normal) and (ALB is Low) then (output 1 is low) . 

7. If (AGE is Adult) and (GENDER is Male) and (TB is Normal) and (DB is Normal) 

and (AAP is Normal) and (SGPT is Normal) and (SGOT is Normal) and (TP is 

Normal) and (ALB is Normal) then (output 1 is low) . 

8. If (AGE is Adult) and (GENDER is Male) and (TB is Normal) and (DB is Normal) 

and (AAP is High) and (SGPT is Normal) and (SGOT is Normal) and (TP is Normal) 

and (ALB is Normal) then (outputI is low) . 

9. If (AGE is Adult) and (GENDER is Male) and (DB is Normal) and (SGPT is High) 

and (SGOT is Normal) and (TP is Normal) and (ALB is Normal) then (outputl is low) 
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10. If (AGE is Adult) and (GENDER is Female) and (TB is Normal) and (DB is Normal) 

and (AAP is Normal) and (SGOT is Normal) and (TP is Normal) and (ALB is 

Normal) and (AG is Low) then (output 1 is High) . 

11. If (AGE is Adult) and (GENDER is Female) and (TB is Normal) and (DB is Normal) 

and (AAP is High) and (SGOT is Normal) and (TP is Normal) and (ALB is Normal) 

and (AG is Low) then (output 1 is High) . 

12. If (AGE is Adult) and (GENDER is Female) and (TB is Normal) and (DB is Normal) 

and (AAP is Normal) and (SGOT is Normal) and (TP is Normal) and (ALB is 

Normal) and (AG is Normal) then (output 1 is High) . 

13. If (AGE is Adult) and (GENDER is Female) and (TB is Normal) and (DB is Normal) 

and (AAP is High) and (SGOT is Normal) and (TP is Normal) and (ALB is Normal) 

and (AG is Normal) then (output 1 is High) . 

14. If (AGE is Adult) and (DB is Normal) and (SGOT is Normal) and (TP is Normal) and 

(ALB is High) then (output 1 is low) . 

15. If (AGE is Old) and (GENDER is Male) and (TB is Normal) and (DB is Normal) and 

(SGOT is Normal) and (TP is Normal) and (ALB is Low) and (AG is Low) then 

(output 1 is High) . 

16. If (AGE is Old) and (GENDER is Male) and (TB is Normal) and (DB is Normal) and 

(SGOT is Normal) and (TP is Normal) and (ALB is Normal) and (AG is Low) then 

(output 1 is High) . 

17. If (AGE is Old) and (GENDER is Male) and (TB is Normal) and (DB is Normal) and 

(SGOT is Normal) and (TP is Normal) and (ALB is High) and (AG is Low) then 

(output 1 is low) . 
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18. If (AGE is Old) and (GENDER is Male) and (TB is Normal) and (DB is Normal) and 

(AAP is Normal) and (SGOT is Normal) and (TP is Normal) and (AG is Low) then 

(outputl is High) . 

19. If (AGE is Old) and (GENDER is Male) and (TB is Normal) and (DB is Normal) and 

(AAP is High) and (SGOT is Normal) and (TP is Normal) and (AG is Low) then 

(outputl is High) . 

20. If (AGE is Old) and (TB is Normal) and (DB is Normal) and (AAP is Normal) and 

(SGOT is Normal) and (TP is Normal) and (ALB is Normal) and (AG is Normal) then 

(outputl is High) . 

21. If (AGE is Old) and (TB is Normal) and (DB is Normal) and (AAP is High) and 

(SGOT is Normal) and (TP is Normal) and (ALB is Normal) and (AG is Normal) then 

(outputl is High). 

22. If (AGE is Young) and (DB is Normal) and (SGOT is Normal) and (TP is High) then 

(outputl is High) . 

23. If (AGE is Adult) and (DB is Normal) and (SGPT is Normal) and (SGOT is Normal) 

and (TP is High) and (AG is Low) then (outputl is High) . 

24. If (AGE is Adult) and (DB is Normal) and (SGPT is High) and (SGOT is Normal) and 

(TP is High) then (outputl is High) . 

25. If (AGE is Old) and (DB is Normal) and (SGOT is Normal) and (TP is High) then 

(outputl is low). 

26. If (TB is Normal) and (DB is Normal) and (SGPT is Normal) and (SGOT is High) 

and (AG is Low) then (outputl is High) . 
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27. If (TB is Normal) and (DB is Normal) and (SGPT is Normal) and (SGOT is High) 

and (AG is Normal) then (output 1 is low) . 

28. If (GENDER is Male) and (DB is Normal) and (SGPT is High) and (SGOT is High) 

then (output 1 is High). 

29. If (GENDER is Female) and (DB is Normal) and (SGPT is High) and (SGOT is High) 

then (outputl is High). 

30. If (TB is Normal) and (DB is High) and (AAP is Normal) then (outputl is High . 

31. If (TB is Normal) and (DB is High) and (AAP is High) then (outputl is High) . 

32. If (TB is High) and (DB is High) then (outputl is High) . 

33. If (DB is Normal) and (SGPT is Normal) and (SGOT is Normal) and (TP is High) 

and (AG is Normal) then (outputl is High) . 
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